

LA-UR-19-25815

Approved for public release; distribution is unlimited.

Title: Special Purpose Reactors

Author(s): Mcclure, Patrick Ray

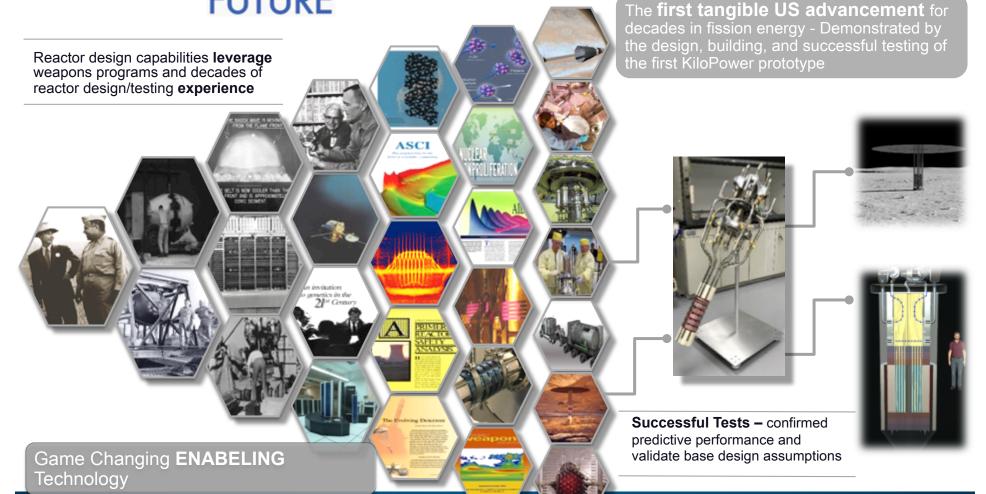
Intended for: Laboratory internal presentations

Issued: 2019-06-21

Special Purpose Reactors

Small fission reactors for space and defense applications

Patrick McClure
Los Alamos National Laboratory
2019

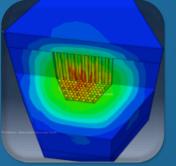


Los Alamos National Laboratory

BOLD SINCE FUTURE

Focusing on established technologies and following the physics

Original designs prioritized simplicity and ease of building/testing by combining existing technologies and following well-known nuclear physics, eliminating the need for complicated control systems



LANL has unique capabilities to DESIGN, BUILD, and TEST special purpose reactors

- LANL is using broad NNSA capabilities to make operational hardware
- Coupling decades of experience with the best computational and scientific tools
- Leveraging existing NNSA resources to provide relatively inexpensive design, computing evaluations, and testing
- With a long history of innovation in nuclear, space, and energy technologies; Los Alamos has the expertise to lead the transformation of novel design into operational reality

Science Based Design & Testing

ExoScale Multi-Physics

EDU: Test to fail

Innovative and Elegantly Simple Design

We followed the physics - letting the reactor run itself

By combining Heat pipe technology and solid fuel – our reactor designs are;

- Simple
- Compact
- Lightweight
- Reliable
- Efficient

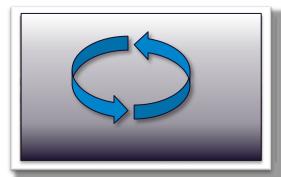
Jim Bridenstine @ @JimBride... · 2h I'm impressed by the work @NASAglenn engineers are doing on the power systems that will enable us to explore, work and live on other worlds. Kilopower and Radioisotope Power technologies are unlocking tremendous potential for @NASA to go further.

And <u>self-regulating through</u>
 <u>fundamental physical changes</u>

LANL's reactor design was taken critical during LANL/NASA experiments at the Device Assembly Facility (DAF) in Nevada:

The design and the underlying physics have been validated.

LANL Special Purpose Reactors - Key Features


Heat pipes

- No pumps or complicated loops
- Highly reliable and safe
- LANL patent technology

Portability and lifetime

- Low mass / minimal volume
- MW for about 10 years (MegaPower)
- kW for about 10 years (KiloPower)
- No refueling

Self Regulated

- Autonomous options
- · Immediate shutdown and passive cooling
- Thermally regulated, no need for active controls
- Load following (reactor self adjusts to power demand)
- Ease of operation in remote locations

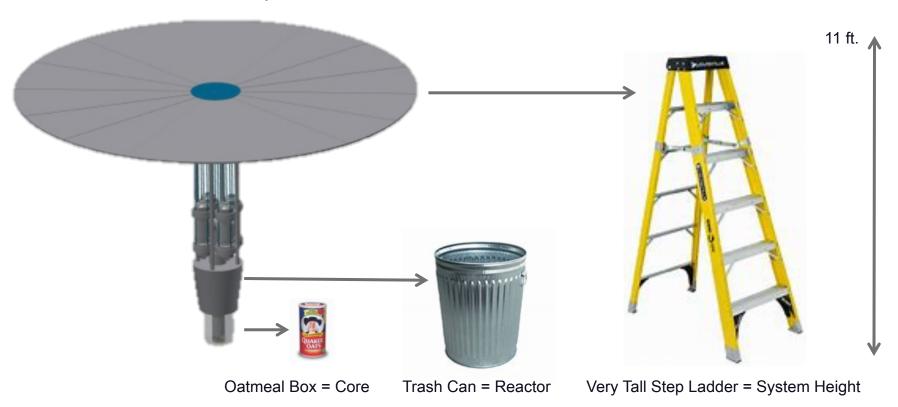
Los Alamos National Laboratory 6/21/19 | 5

The Future?

Reactors on Mars – NASA Concept

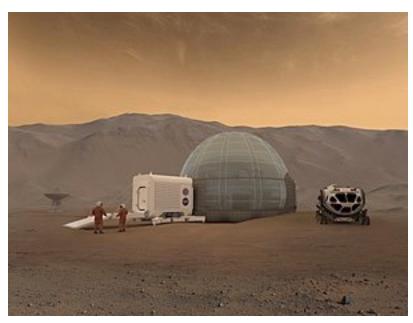

Picture - NASA Glenn Research

1 to 10 kWe Kilopower Surface Reactors


- Utilizes a deployable radiator
- Buried configuration at Lunar and Mars surface
- Full shield for lander configurations

How big is Kilopower?

10 kilowatt electric Kilopower reactor


What is needed for Humans to go to Mars

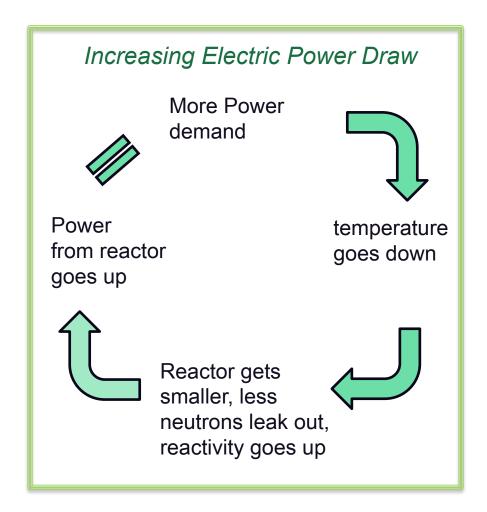
Electricity would be used to make:

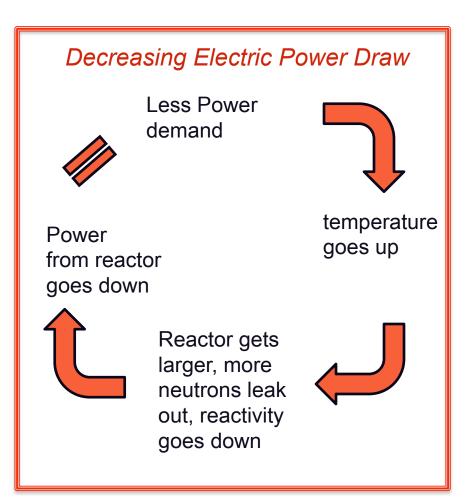
- Propellant to get back to Mars orbit
 - Liquid Oxygen
 - Methane

International Mars Research Station - Shaun Moss

Mars Base Camp - NASA Langley

Electricity is needed for:

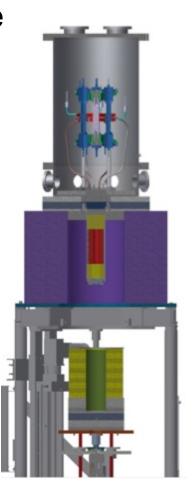

- Oxygen for astronauts
- Purify water
- Power of habitat and rover

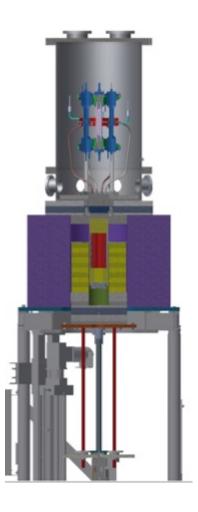

Why this reactor design?

Very simple, reliable design

- -Self-regulating design using simple reactor physics
- -The power is so low there should be no measurable nuclear effects
- -Low power allows small temperature gradients and stresses, and high tolerance to any potential transient
- Available fuel with existing Infrastructure
- Heat pipe reactors are simple, reliable, and robust
 - -Eliminates components associated with pumped loops; simplifies integration
 - -Fault tolerant power and heat transport system
 - -The only reactor startup action is to withdraw reactivity control
- Systems use existing thermoelectric or Stirling engine technology and design
- Low cost testing and demonstration
 - -Non-nuclear system demonstration requires very little infrastructure and power.
 - Nuclear demonstration accommodated in existing facility, the thermal power and physical size fits within current activities at the Nevada National Security Site.

Self Regulating Reactor



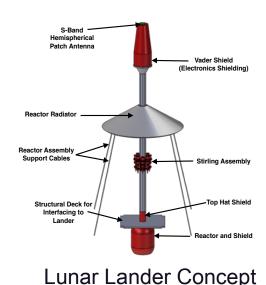

Space Reactor Safety

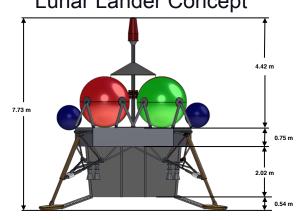
- A reactor that has not undergone fission, (been turned on), has very very low safety concerns. It will have from 1 to 10's of curies of naturally occurring radioactivity
- This is 1,000s to 10,000s times lower radioactivity than in current radioisotope systems already flown in space
- Launch accidents will have consequences <u>100's of</u> <u>times less</u> than background radiation or radiation from a commercial plane flight
- After the reactor has fissioned, it will become radioactive
 - Reactors would only be used in deep space, very high Earth orbit (long term decay) and on other planets.

Kilopower Reactor Using Stirling TechnologY = KRUSTY – Nuclear Demonstration Experiment

- Designed with space flight-like components
 - Uranium core, neutron reflector, heat pipes, Stirling engines
- Tested at flight-like conditions
 - In a vacuum
 - Design thermal power
 - Design temperature
 - Design system dynamics
- Performs tasks needed for space flight
 - Computer modeling
 - Nuclear test operations
 - Ground safety
 - Transport and assembly

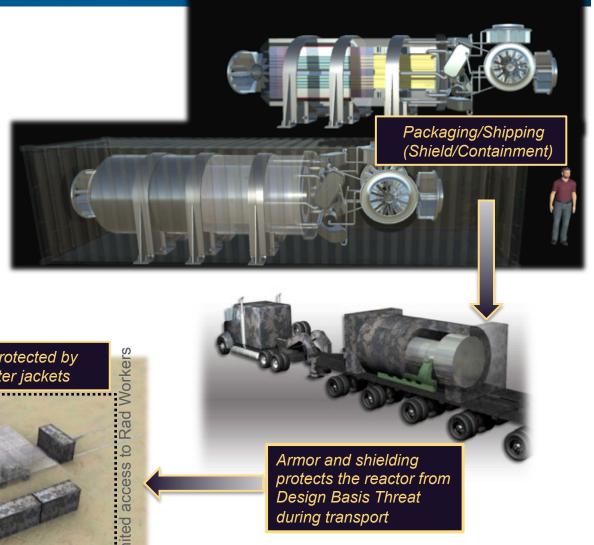
Experiment Assembly


KRUSTY Performance Metrics

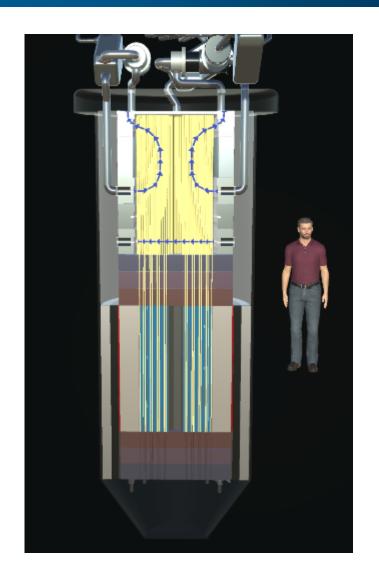

Event Scenario	Performance Metric	KRUSTY Experiment	Performance Status
Reactor Startup	< 3 hours to 800 deg. C	1.5 hours to 800 deg. C	Exceeds
Steady State Performance	4 kWt at 800 deg. C	> 4 kWt at 800 deg. C	Exceeds
Total Loss of Coolant	< 50 deg. C transient	< 15 deg. C transient	Exceeds
Maximum Coolant	< 50 deg. C transient	< 10 deg. C transient	Exceeds
Convertor Efficiency	> 25 %	> 30 %	Exceeds
Convertor Operation	Start, Stop, Hold, Restart	Start, Stop, Hold, Restart	Meets
System Electric Power Turn Down Ratio	> 2:1 (half power)	> 16:1	Exceeds

Los Alamos National Laboratory 6/21/19 | 15

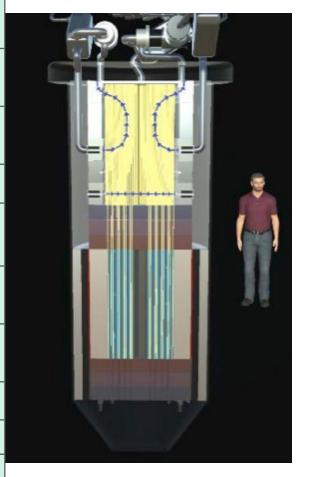
Current Work


- Project needs a <u>technology</u> <u>demonstration mission</u>
- NASA is looking at a reactor on the moon to power an ISRU unit (make propellent)
- Development work on Kilopower system and components is continuing

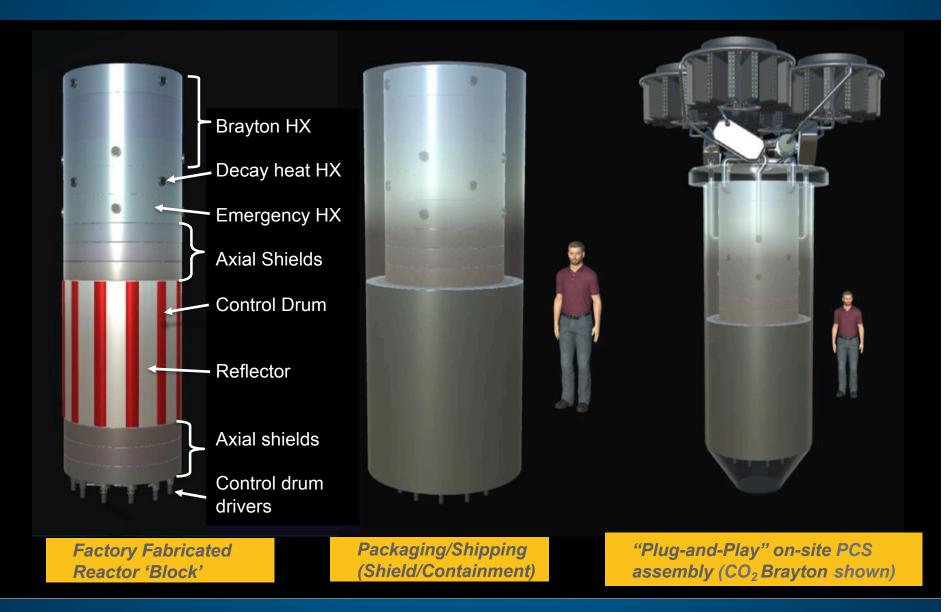
Agile Military Power (AMP) – multi-MW Class Reactor Following the physics to the next level


- Transportable by C-17/C-130 aircraft (Type C container)
- Transportable by truck to base
- Installed and operating within 72 hrs
- Easily Integrated to base, no major civil structures necessary
- Shutdown, cool down, disconnect and "bug-out" in less than 7 days

General Specifications of the AMP Design


- Fuel & Moderator: 1,000-5,000 kg (UO₂/UN; U-Mo)
- Power level: Scalable ~1MW 15 MW; 10-12
 year life time
- Monolith/Cartridges: 10,000 kg (Core + Heat Exchangers)
- **Reflector:** 2,000 kg (BeO) or 8,000 kg (Al₂O₃)
- Neutron and Gamma Shield: < 12,000 kg (B4C + Pb/Steel)
- Total weight: ~35 metric-tons (~25 metric-tons for 2 MWe)
 - ~50% reactor and PCS
 - ~50% armor and shielding

Strong ceramics and metals serve as armor and shielding

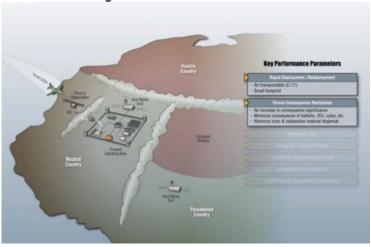


AMP Key Design Features

Key Performance Parameters from DARPA Study	LANL Design Addresses KPP?
KPP1: Seamless multi-modal transport of the fresh and used reactor system	Yes
KPP2: No significant consequences from the design basis threats	Yes
KPP3: Transportable by C-17 aircraft (Type C container)	Yes
KPP4: Installed and operating within 72 hrs.	Yes
KPP5: Shutdown, cool down, disconnect and "bug-out" in less than 7 days ('should not be long-pole in the tent')	Yes
KPP6: Capable of immediate shutdown and passive cooling	Yes
KPP7: No significant increase in risk to the military personnel or to the environment	Yes
KPP8: Greater than 2-year refueling	Yes (>10 yr)
KPP9: Minimal proliferation risk	Yes (LEU)
KPP10: Design scalable to 10 MWe	Yes

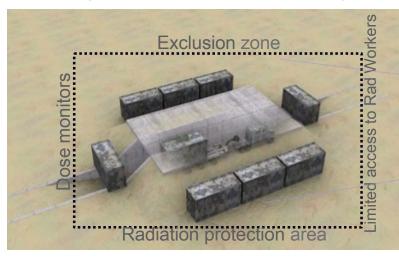
KPP 1: Seamless multi-modal transport (fresh and used)

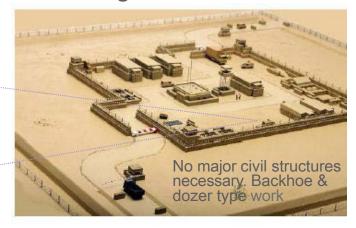
KPP 3: Transportable by C-17


Weight and form factor make C-17 transport possible for multi-MW versions of AMP

Weight and form factor make C-130 transport a feasible option for ~1 MW versions of AMP

KPP4: Installed and operating within 72 hours


Fly reactor to theater


Transport by truck to the base

Protect by earth, barriers, & water jackets

Integrate into the base

Summary

- LANL is leading the efforts to develop micro-reactors
- NASA is looking to put reactors back into space as early as the mid 2020's
- LANL is working with industrial partners for DoD applications that could lead to commercial micro-reactors